A multidimensional precision medicine approach identifies an autism subtype characterized by dyslipidemia

CHIP Contributors: Yuan Luo, PhD


Abstract

The promise of precision medicine lies in data diversity. More than the sheer size of biomedical data, it is the layering of multiple data modalities, offering complementary perspectives, that is thought to enable the identification of patient subgroups with shared pathophysiology. In the present study, we use autism to test this notion. By combining healthcare claims, electronic health records, familial whole-exome sequences and neurodevelopmental gene expression patterns, we identified a subgroup of patients with dyslipidemia-associated autism.


Full Citation

Luo, Y., Eran, A., Palmer, N. et al. A multidimensional precision medicine approach identifies an autism subtype characterized by dyslipidemia. Nat Med 26, 1375–1379 (2020). https://doi.org/10.1038/s41591-020-1007-0

« Back To Publications View Article

Note: Publications may be freely available or require a fee to access on the journal’s website.

Join Us

CHIP collaborators are part of the public, private and nonprofit sectors and have an interest in working toward a world where health outcomes are improved because data is used effectively.

Get in Touch

Join Our Mailing List

Don't Forget To Connect